Some subclasses of meromorphic multivalent functions involving a family of multiplier transforms

Zhi-Gang Wang *

School of Mathematics and Computing Science Hunan First Normal University Changsha 410205, Hunan P. R. China wangmath@163.com

Xiao-Yuan Wang

School of Science Yanshan University Qinhuangdao 066004, Hebei P. R. China mewangxiaoyuan@163.com

Abstract. Making use of the principle of subordination between analytic functions and a family of multiplier transforms defined on the space of meromorphic functions, we introduce and investigate some new subclasses of meromorphic multivalent functions. Such results as inclusion relationships and integral-preserving properties associated with these subclasses are proved. Several subordination and superordination results involving this family of multiplier transforms are also investigated.

Keywords: analytic functions, meromorphic multivalent functions, subordination and superordination between analytic functions, Hadamard product (or convolution), multiplier transforms.

1. Introduction and preliminaries

Let Σ_p denote the class of functions of the form

(1.1)
$$f(z) = z^{-p} + \sum_{k=0}^{\infty} a_k z^k \quad (p \in \mathbb{N} := \{1, 2, 3, \ldots\}),$$

which are *analytic* in the *punctured* open unit disk

 $\mathbb{U}^* := \{ z : z \in \mathbb{C} \text{ and } 0 < |z| < 1 \} =: \mathbb{U} \setminus \{0\}.$

Let $\mathcal{H}(\mathbb{U})$ be the linear space of all analytic functions in \mathbb{U} . For a positive integer number n and $a \in \mathbb{C}$, we let

$$\mathcal{H}[a,n] := \{ f \in \mathcal{H}(\mathbb{U}) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \}.$$

^{*.} Corresponding author

Let $f, g \in \Sigma_p$, where f is given by (1.1) and g is defined by

$$g(z) = z^{-p} + \sum_{k=0}^{\infty} b_k z^k.$$

Then the Hadamard product (or convolution) f * g of the functions f and g is defined by

$$(f * g)(z) := z^{-p} + \sum_{k=0}^{\infty} a_k b_k z^k =: (g * f)(z).$$

Let ${\mathcal P}$ denote the class of functions of the form

$$p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k,$$

which are analytic and convex in \mathbb{U} and satisfy the condition $\Re(p(z)) > 0$ $(z \in \mathbb{U})$.

For two functions f and g, analytic in \mathbb{U} , we say that the function f is subordinate to g in \mathbb{U} , and write $f(z) \prec g(z), (z \in \mathbb{U})$, if there exists a Schwarz function ω , which is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ $(z \in \mathbb{U})$ such that $f(z) = g(\omega(z)), (z \in \mathbb{U})$. Indeed, it is known that $f(z) \prec g(z), (z \in \mathbb{U}) \Longrightarrow$ f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$. Furthermore, if the function g is univalent in \mathbb{U} , then we have the following equivalence:

$$f(z) \prec g(z) \quad (z \in \mathbb{U}) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

In a recent paper, El-Ashwah [6] defined the multiplier transform $\mathcal{D}_{\lambda,p}^{n,l}$ of functions $f \in \Sigma_p$ by

(1.2)
$$\mathcal{D}_{\lambda,p}^{n,l}f(z) := z^{-p} + \sum_{k=0}^{\infty} \left(\frac{\lambda + l(k+p)}{\lambda}\right)^n a_k z^k$$
$$(z \in \mathbb{U}^*; \ \lambda > 0; \ l \ge 0; \ n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}; \ p \in \mathbb{N}).$$

It should be remarked that the operators $\mathcal{D}_{\lambda,1}^{n,1}$ and $\mathcal{D}_{1,1}^{n,1}$ are the multiplier transforms introduced and investigated, respectively, by Sarangi and Uralegaddi [14], and Uralegaddi and Somanatha [18, 19]. Analogous to $\mathcal{D}_{\lambda,p}^{n,l}$, we here define a new multiplier transform $\mathcal{I}_{\lambda,p,\mu}^{n,l}$ as follows.

By setting

(1.3)
$$f_{\lambda,p}^{n,l}(z) := z^{-p} + \sum_{k=0}^{\infty} \left(\frac{\lambda + l(k+p)}{\lambda}\right)^n z^k,$$
$$(z \in \mathbb{U}^*; \ n, l \ge 0; \ \lambda > 0; \ p \in \mathbb{N}),$$

we define a new function $f_{\lambda,p,\mu}^{n,l}(z)$ in terms of the Hadamard product (or convolution):

(1.4)
$$f_{\lambda,p}^{n,l}(z) * f_{\lambda,p,\mu}^{n,l}(z) = \frac{1}{z(1-z)^{\mu}} \quad (z \in \mathbb{U}^*; \ \lambda, \ \mu > 0; \ n, \ l \ge 0; \ p \in \mathbb{N}).$$

Then, analogous to $\mathcal{D}_{\lambda,p}^{n,l}$, we have

(1.5)
$$\mathcal{I}^{n,l}_{\lambda,p,\mu}f(z) := f^{n,l}_{\lambda,p,\mu}(z) * f(z), \quad (z \in \mathbb{U}^*; \ f \in \Sigma_p),$$

where (and throughout this paper unless otherwise mentioned) the parameters n, l, p, λ and μ are constrained as follows:

$$n \ge 0; \ l \ge 0; \ p \in \mathbb{N}, \ \lambda > 0 \text{ and } \mu > 0.$$

We can easily find from (1.3), (1.4) and (1.5) that

(1.6)
$$\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z) = z^{-p} + \sum_{k=0}^{\infty} \frac{(\mu)_{k+1}}{(k+1)!} \left(\frac{\lambda}{\lambda + l(k+p)}\right)^n a_k z^k, \quad (z \in \mathbb{U}^*),$$

where $(\mu)_k$ is the Pochhammer symbol defined by

$$(\mu)_k := \begin{cases} 1, & (k=0), \\ \mu(\mu+1)\cdots(\mu+k-1), & (k\in\mathbb{N}). \end{cases}$$

Clearly, the operator $\mathcal{I}_{\lambda,1,\mu}^{n,1}$ $(n \in \mathbb{N}_0)$ is the well-known Cho-Kwon-Srivastava operator (see, for more details, [2, 3, 8, 13, 15]).

It is readily verified from (1.6) that

(1.7)
$$lz \left(\mathcal{I}_{\lambda,p,\mu}^{n+1,l} f \right)'(z) = \lambda \mathcal{I}_{\lambda,p,\mu}^{n,l} f(z) - (\lambda + p l) \mathcal{I}_{\lambda,p,\mu}^{n+1,l} f(z),$$

and

(1.8)
$$z\left(\mathcal{I}_{\lambda,p,\mu}^{n,l}f\right)'(z) = \mu \mathcal{I}_{\lambda,p,\mu+1}^{n,l}f(z) - (\mu+1)\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z).$$

By making use of the principle of subordination between analytic functions, we introduce the subclasses $\mathcal{MS}_p^*(\eta; \phi)$, $\mathcal{MK}_p(\eta; \phi)$, $\mathcal{MC}_p(\eta, \delta; \phi, \psi)$ and $\mathcal{MQC}_p(\eta, \delta; \phi, \psi)$ of the class Σ_p which are defined by

$$\mathcal{MS}_{p}^{*}(\eta;\phi) := \left\{ f \in \Sigma_{p} : \frac{1}{p-\eta} \left(-\frac{zf'(z)}{f(z)} - \eta \right) \prec \phi(z), \\ (\phi \in \mathcal{P}; \ 0 \leq \eta$$

and

$$\mathcal{MQC}_{p}(\eta, \delta; \phi, \psi) := \left\{ f \in \Sigma_{p} : \exists g \in \mathcal{MK}_{p}(\eta; \phi) \\ \text{such that } \frac{1}{p - \delta} \left(-\frac{(zf'(z))'}{g'(z)} - \delta \right) \prec \psi(z), (\phi, \psi \in \mathcal{P}; 0 \leq \eta, \delta < p; z \in \mathbb{U}) \right\}.$$

Indeed, the above mentioned function classes are generalizations of the general meromorphic starlike, meromorphic convex, meromorphic close-to-convex and meromorphic quasi-convex functions in analytic function theory (see, for details, [1, 7, 11, 12, 16, 17, 20, 21, 22]).

Next, by using the operator defined by (1.6), we define the following subclasses $\mathcal{MS}_{\lambda,p,\mu}^{n,l}(\eta;\phi), \mathcal{MK}_{\lambda,p,\mu}^{n,l}(\eta;\phi), \mathcal{MC}_{\lambda,p,\mu}^{n,l}(\eta,\delta;\phi,\psi)$ and $\mathcal{MQC}_{\lambda,p,\mu}^{n,l}(\eta,\delta;\phi,\psi)$ of the class Σ_p :

$$\mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi) := \left\{ f \in \Sigma_p : \ \mathcal{I}^{n,l}_{\lambda,p,\mu} f \in \mathcal{MS}^*_p(\eta;\phi) \right\},\\ \mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi) := \left\{ f \in \Sigma_p : \ \mathcal{I}^{n,l}_{\lambda,p,\mu} f \in \mathcal{MK}_p(\eta;\phi) \right\},\\ \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi) := \left\{ f \in \Sigma_p : \ \mathcal{I}^{n,l}_{\lambda,p,\mu} f \in \mathcal{MC}_p(\eta,\delta;\phi,\psi) \right\},$$

and

$$\mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi) := \left\{ f \in \Sigma_p : \mathcal{I}^{n,l}_{\lambda,p,\mu} f \in \mathcal{MQC}_p(\eta,\delta;\phi,\psi) \right\}.$$

Clearly, we know that

(1.9)
$$f \in \mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi) \Longleftrightarrow -zf' \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi),$$

and

(1.10)
$$f \in \mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi) \Longleftrightarrow -zf' \in \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi).$$

In order to prove our main results, we need the following definition and lemmas.

Definition 1. (See [10]) Denote by Q the set of all functions f that are analytic and injective on $\overline{\mathbb{U}} - E(f)$, where

$$E(f) = \left\{ \varepsilon \in \partial \mathbb{U} : \lim_{z \to \varepsilon} f(z) = \infty \right\},$$

and such that $f'(\varepsilon) \neq 0$ for $\varepsilon \in \partial \mathbb{U} - E(f)$.

Lemma 1 ([5]). Let $\kappa, \vartheta \in \mathbb{C}$. Suppose also that \mathfrak{m} is convex and univalent in \mathbb{U} with

$$\mathfrak{m}(0) = 1, \quad and \quad \Re(\kappa\mathfrak{m}(z) + \vartheta) > 0, \quad (z \in \mathbb{U}).$$

If \mathfrak{u} is analytic in \mathbb{U} with $\mathfrak{u}(0) = 1$, then the subordination

$$\mathfrak{u}(z) + \frac{z\mathfrak{u}'(z)}{\kappa\mathfrak{u}(z) + \vartheta} \prec \mathfrak{m}(z), \quad (z \in \mathbb{U})$$

implies that

$$\mathfrak{u}(z) \prec \mathfrak{m}(z), \quad (z \in \mathbb{U}).$$

Lemma 2 ([9]). Let h be convex univalent in \mathbb{U} and ζ be analytic in \mathbb{U} with

$$\Re(\zeta(z)) \ge 0, \quad (z \in \mathbb{U}).$$

If q is analytic in \mathbb{U} and q(0) = h(0), then the subordination

$$q(z) + \zeta(z)zq'(z) \prec h(z), \quad (z \in \mathbb{U})$$

implies that

$$q(z) \prec h(z), \quad (z \in \mathbb{U}).$$

The main purpose of the present paper is to investigate some inclusion relationships and integral-preserving properties of the subclasses

$$\mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi), \ \mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi), \ \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi) \ \text{and} \ \mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$$

of meromorphic functions involving the operator $\mathcal{I}_{\lambda,p,\mu}^{n,l}$. Several subordination and superordination results involving this operator are also investigated.

2. The main inclusion relationships

We begin by presenting our first inclusion relationship given by Theorem 1 below.

Theorem 1. Let $0 \leq \eta < p$ and $\phi \in \mathcal{P}$ with

(2.1)
$$\max_{z \in \mathbb{U}} \left\{ \Re\left(\phi(z)\right) \right\} < \min\left\{ \frac{\mu + 1 - \eta}{p - \eta}, \frac{\lambda + pl - \eta l}{(p - \eta)l} \right\}, \quad (z \in \mathbb{U}).$$

Then

$$\mathcal{MS}^{n,l}_{\lambda,p,\mu+1}(\eta;\phi) \subset \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi) \subset \mathcal{MS}^{n+1,l}_{\lambda,p,\mu}(\eta;\phi).$$

Proof. We first prove that

(2.2)
$$\mathcal{MS}^{n,l}_{\lambda,p,\mu+1}(\eta;\phi) \subset \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi).$$

Let $f \in \mathcal{MS}^{n,l}_{\lambda,p,\mu+1}(\eta;\phi)$ and suppose that

(2.3)
$$\mathfrak{h}(z) := \frac{1}{p - \eta} \left(-\frac{z \left(\mathcal{I}_{\lambda, p, \mu}^{n, l} f \right)'(z)}{\mathcal{I}_{\lambda, p, \mu}^{n, l} f(z)} - \eta \right),$$

where \mathfrak{h} is analytic in \mathbb{U} with $\mathfrak{h}(0) = 1$. Combining (1.8) and (2.3), we find that

(2.4)
$$\mu \frac{\mathcal{I}_{\lambda,p,\mu+1}^{n,l}f(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z)} = -(p-\eta)\mathfrak{h}(z) - \eta + \mu + 1.$$

Taking the logarithmical differentiation on both sides of (2.4) and multiplying the resulting equation by z, we get

(2.5)
$$\frac{1}{p-\eta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu+1}^{n,l} f \right)'(z)}{\mathcal{I}_{\lambda,p,\mu+1}^{n,l} f(z)} - \eta \right)$$
$$= \mathfrak{h}(z) + \frac{z \mathfrak{h}'(z)}{-(p-\eta)\mathfrak{h}(z) - \eta + \mu + 1} \prec \phi(z).$$

By virtue of (2.1), an application of Lemma 1 to (2.5) yields $\mathfrak{h} \prec \phi$, that is $f \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$. Thus, the assertion (2.2) of Theorem 1 holds.

To prove the second part of Theorem 1, we assume that $f \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$ and set

(2.6)
$$\mathfrak{g}(z) := \frac{1}{p-\eta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu}^{n+1,\,l} f \right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n+1,\,l} f(z)} - \eta \right),$$

where \mathfrak{g} is analytic in \mathbb{U} with $\mathfrak{g}(0) = 1$. Combining (1.7), (2.1) and (2.6) and applying the similar method of proof of the first part, we get $\mathfrak{g} \prec \phi$, that is $f \in \mathcal{MS}^{n+1,l}_{\lambda,p,\mu}(\eta;\phi)$. Therefore, the second part of Theorem 1 also holds. The proof of Theorem 1 is evidently completed. \Box

Theorem 2. Let $0 \leq \eta < p$ and $\phi \in \mathcal{P}$ with (2.1) holds. Then

$$\mathcal{MK}^{n,l}_{\lambda,p,\mu+1}(\eta;\phi) \subset \mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi) \subset \mathcal{MK}^{n+1,l}_{\lambda,p,\mu}(\eta;\phi).$$

Proof. In view of (1.9) and Theorem 1, we find that

$$f \in \mathcal{MK}_{\lambda,p,\mu+1}^{n,l}(\eta;\phi) \iff \mathcal{I}_{\lambda,p,\mu+1}^{n,l}f \in \mathcal{MK}_{p}(\eta;\phi)$$

$$\iff -z\left(\mathcal{I}_{\lambda,p,\mu+1}^{n,l}f\right)' \in \mathcal{MS}_{p}^{*}(\eta;\phi)$$

$$\iff \mathcal{I}_{\lambda,p,\mu+1}^{n,l}\left(-zf'\right) \in \mathcal{MS}_{p}^{*}(\eta;\phi)$$

$$\implies -zf' \in \mathcal{MS}_{\lambda,p,\mu}^{n,l}(\eta;\phi)$$

$$\iff \mathcal{I}_{\lambda,p,\mu}^{n,l}\left(-zf'\right) \in \mathcal{MS}_{p}^{*}(\eta;\phi)$$

$$\iff \mathcal{I}_{\lambda,p,\mu}^{n,l}f \in \mathcal{MK}_{p}(\eta;\phi)$$

$$\iff \mathcal{I}_{\lambda,p,\mu}^{n,l}f \in \mathcal{MK}_{p}(\eta;\phi),$$

and

$$(2.8) f \in \mathcal{MK}_{\lambda,p,\mu}^{n,l}(\eta;\phi) \iff -zf' \in \mathcal{MS}_{\lambda,p,\mu}^{n,l}(\eta;\phi)$$
$$\implies -zf' \in \mathcal{MS}_{\lambda,p,\mu}^{n+1,l}(\eta;\phi)$$
$$\iff \mathcal{I}_{\lambda,p,\mu}^{n+1,l}\left(-zf'\right) \in \mathcal{MS}_{p}^{*}(\eta;\phi)$$
$$\iff \mathcal{I}_{\lambda,p,\mu}^{n+1,l}f \in \mathcal{MK}_{p}(\eta;\phi)$$
$$\iff f \in \mathcal{MK}_{\lambda,p,\mu}^{n+1,l}(\eta;\phi).$$

Combining (2.7) and (2.8), we deduce that the assertion of Theorem 2 holds. \Box

Theorem 3. Let $0 \leq \eta < p, 0 \leq \delta < p$ and $\phi, \psi \in \mathcal{P}$ with (2.1) holds. Then

$$\mathcal{MC}^{n,l}_{\lambda,p,\mu+1}(\eta,\delta;\phi,\psi) \subset \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi) \subset \mathcal{MC}^{n+1,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$$

Proof. We begin by proving that

(2.9)
$$\mathcal{MC}^{n,l}_{\lambda,p,\mu+1}(\eta,\delta;\phi,\psi) \subset \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi).$$

Let $f \in \mathcal{MC}^{n,l}_{\lambda,p,\mu+1}(\eta,\delta;\phi,\psi)$. Then, by definition, we know that

(2.10)
$$\frac{1}{p-\delta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu+1}^{n,l} f \right)'(z)}{\mathcal{I}_{\lambda,p,\mu+1}^{n,l} g(z)} - \delta \right) \prec \psi(z), \quad (z \in \mathbb{U})$$

with $g \in \mathcal{MS}^{n,l}_{\lambda,p,\mu+1}(\eta;\phi).$

Moreover, by Theorem 1, we know that $g \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$, which implies that

(2.11)
$$q(z) := \frac{1}{p - \eta} \left(-\frac{z \left(\mathcal{I}_{\lambda, p, \mu}^{n, l} g \right)'(z)}{\mathcal{I}_{\lambda, p, \mu}^{n, l} g(z)} - \eta \right) \prec \phi(z), \quad (z \in \mathbb{U}).$$

We now suppose that

(2.12)
$$\mathbb{p}(z) := \frac{1}{p-\delta} \left(-\frac{z \left(\mathcal{I}^{n,l}_{\lambda,p,\mu} f \right)'(z)}{\mathcal{I}^{n,l}_{\lambda,p,\mu} g(z)} - \delta \right), \quad (z \in \mathbb{U}),$$

where \mathbb{p} is analytic in \mathbb{U} with $\mathbb{p}(0) = 1$. Combining (1.8) and (2.12), we find that

(2.13)
$$-[(p-\delta)_{\mathbb{D}}(z)+\delta]\mathcal{I}_{\lambda,p,\mu}^{n,l}g(z) = \mu \mathcal{I}_{\lambda,p,\mu+1}^{n,l}f(z) - (\mu+1)\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z).$$

Differentiating both sides of (2.13) with respect to z and multiplying the resulting equation by z, we get

(2.14)
$$- (p - \delta)zp'(z) - [(p - \delta)p(z) + \delta][-(p - \eta)q(z) - \eta + \mu + 1]$$
$$= \mu \frac{z\left(\mathcal{I}_{\lambda,p,\mu+1}^{n,l}f\right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l}g(z)}.$$

In view of (1.8), (2.11) and (2.14), we conclude that

(2.15)
$$\frac{1}{p-\delta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu+1}^{n,l}f \right)'(z)}{\mathcal{I}_{\lambda,p,\mu+1}^{n,l}g(z)} - \delta \right)$$
$$= \mathbb{p}(z) + \frac{z \mathbb{p}'(z)}{-(p-\eta)\mathbb{q}(z) - \eta + \mu + 1} \prec \psi(z), \quad (z \in \mathbb{U}).$$

By noting that (2.1) holds and

$$q(z) \prec \phi(z), \quad (z \in \mathbb{U}),$$

we know that

$$\Re(-(p-\eta)\mathbf{q}(z) - \eta + \mu + 1) > 0, \quad (z \in \mathbb{U}).$$

Thus, an application of Lemma 2 to (2.15) yields

$$\mathbb{P}(z) \prec \psi(z), \quad (z \in \mathbb{U}),$$

that is, that $f \in \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$, which implies that the assertion (2.9) of Theorem 3 holds.

By virtue of (1.7) and (2.1), and making use of the similar arguments of the details above, we deduce that

$$\mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi) \subset \mathcal{MC}^{n+1,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi).$$

The proof of Theorem 3 is thus completed.

Theorem 4. Let $0 \leq \eta < p, 0 \leq \delta < p$ and $\phi, \psi \in \mathcal{P}$ with (2.1) holds. Then

$$\mathcal{MQC}^{n,l}_{\lambda,p,\mu+1}(\eta,\delta;\phi,\psi) \subset \mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi) \subset \mathcal{MQC}^{n+1,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi).$$

Proof. In view of (1.10) and Theorem 3, and by similarly applying the method of proof of Theorem 2, we conclude that the assertion of Theorem 4 holds. \Box

3. A set of integral-preserving properties

In this section, we derive some integral-preserving properties involving two families of integral operators.

Theorem 5. Let $f \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$ with $\phi \in \mathcal{P}$ and

(3.1)
$$\Re(\phi(z)) < \frac{\Re(\nu) - \eta}{p - \eta}, \quad (z \in \mathbb{U}; \ \Re(\nu) > p).$$

Then the integral operator $F_{\nu}(f)$ defined by

(3.2)
$$F_{\nu}(f) := F_{\nu}(f)(z) = \frac{\nu - p}{z^{\nu}} \int_{0}^{z} t^{\nu - 1} f(t) dt, \quad (z \in \mathbb{U}; \ \Re(\nu) > p)$$

belongs to the class $\mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$.

Proof. Let $f \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$. Then, from (3.2), we find that

(3.3)
$$z\left(\mathcal{I}_{\lambda,p,\mu}^{n,l}F_{\nu}(f)\right)'(z) + \nu \mathcal{I}_{\lambda,p,\mu}^{n,l}F_{\nu}(f)(z) = (\nu - p)\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z).$$

By setting

(3.4)
$$\mathbb{P}(z) := \frac{1}{p-\eta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu}^{n,l} F_{\nu}(f) \right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l} F_{\nu}(f)(z)} - \eta \right),$$

we observe that \mathbb{P} is analytic in \mathbb{U} with $\mathbb{P}(0) = 1$. It follows from (3.3) and (3.4) that

(3.5)
$$-(p-\eta)\mathbb{P}(z) - \eta + \nu = (\nu - p)\frac{\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l}F_{\nu}(f)(z)}.$$

Differentiating both sides of (3.5) with respect to z logarithmically and multiplying the resulting equation by z, we get

(3.6)
$$\mathbb{P}(z) + \frac{z\mathbb{P}'(z)}{-(p-\eta)\mathbb{P}(z) - \eta + \nu} = \frac{1}{p-\eta} \left(-\frac{z(\mathcal{I}_{\lambda,p,\mu}^{n,l}f)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z)} - \eta \right) \prec \phi(z), \quad (z \in \mathbb{U}).$$

Since (3.1) holds, an application of Lemma 1 to (3.6) yields

$$\frac{1}{p-\eta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu}^{n,l} F_{\nu}(f) \right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l} F_{\nu}(f)(z)} - \eta \right) \prec \phi(z),$$

which implies that the assertion of Theorem 5 holds.

Theorem 6. Let $f \in \mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$ with $\phi \in \mathcal{P}$ and (3.1) holds. Then the integral operator $F_{\nu}(f)$ defined by (3.2) belongs to the class $\mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$.

Proof. By virtue of (1.9) and Theorem 5, we easily find that

$$f \in \mathcal{MK}_{\lambda,p,\mu}^{n,l}(\eta;\phi) \iff -zf' \in \mathcal{MS}_{\lambda,p,\mu}^{n,l}(\eta;\phi)$$
$$\implies F_{\nu}\left(-zf'\right) \in \mathcal{MS}_{\lambda,p,\mu}^{n,l}(\eta;\phi)$$
$$\iff -z\left(F_{\nu}(f)\right)' \in \mathcal{MS}_{p}^{*}(\eta;\phi)$$
$$\iff F_{\nu}(f) \in \mathcal{MK}_{\lambda,p,\mu}^{n,l}(\eta;\phi).$$

The proof of Theorem 6 is evidently completed.

Theorem 7. Let $f \in \mathcal{MC}^n_{\lambda,\mu}(\eta, \delta; \phi, \psi)$ with $\phi \in \mathcal{P}$ and (3.1) holds. Then the integral operator $F_{\nu}(f)$ defined by (3.2) belongs to the class $\mathcal{MC}^n_{\lambda,\mu}(\eta, \delta; \phi, \psi)$.

Proof. Let $f \in \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$. Then, by definition, we know that there exists a function $g \in \mathcal{MS}^*_p(\eta;\phi)$ such that

(3.7)
$$\frac{1}{p-\eta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu}^{n,l} f \right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l} g(z)} - \eta \right) \prec \psi(z), \quad (z \in \mathbb{U}).$$

Since $g \in \mathcal{MS}_p^*(\eta; \phi)$, by Theorem 5, we easily find that $F_{\nu}(g) \in \mathcal{MS}_p^*(\eta; \phi)$, which implies that

(3.8)
$$\mathbb{H}(z) := \frac{1}{p - \eta} \left(-\frac{z \left(\mathcal{I}_{\lambda, p, \mu}^{n, l} F_{\nu}(g) \right)'(z)}{\mathcal{I}_{\lambda, p, \mu}^{n, l} F_{\nu}(g)(z)} - \eta \right) \prec \phi(z)$$

We now set

(3.9)
$$\mathbb{Q}(z) := \frac{1}{p-\delta} \left(-\frac{z \left(\mathcal{I}^{n,l}_{\lambda,p,\mu} F_{\nu}(f)\right)'(z)}{\mathcal{I}^{n,l}_{\lambda,p,\mu} F_{\nu}(g)(z)} - \delta \right),$$

where \mathbb{Q} is analytic in \mathbb{U} with $\mathbb{Q}(0) = 1$. From (3.3) and (3.9), we get

$$(3.10) - [(p-\delta)\mathbb{Q}(z) + \delta]\mathcal{I}_{\lambda,p,\mu}^{n,l}F_{\nu}(g)(z) + \nu \mathcal{I}_{\lambda,p,\mu}^{n,l}F_{\nu}(f)(z) = (\nu - p)\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z).$$

Combining (3.8), (3.9) and (3.10), we find that

(3.11)
$$- (p-\delta)z\mathbb{Q}'(z) - [(p-\delta)\mathbb{Q}(z)+\delta][-(p-\eta)\mathbb{H}(z)-\eta+\nu]$$
$$= (\nu-p)\frac{z\left(\mathcal{I}_{\lambda,p,\mu}^{n,l}f\right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l}F_{\nu}(g)(z)}.$$

$$\square$$

By virtue of (1.8), (3.8) and (3.11), we deduce that

(3.12)
$$\frac{1}{p-\delta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu}^{n,l} f \right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l} g(z)} - \delta \right)$$
$$= \mathbb{Q}(z) + \frac{z \mathbb{Q}'(z)}{-(p-\eta)\mathbb{H}(z) - \eta + \nu} \prec \psi(z), \quad (z \in \mathbb{U}).$$

The remainder of the proof of Theorem 7 is much akin to that of Theorem 3. We, therefore, choose to omit the analogous details involved. We thus find that

$$\mathbb{Q}(z) \prec \psi(z), \quad (z \in \mathbb{U}),$$

which implies that $F_{\nu}(f) \in \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$. The proof of Theorem 7 is thus completed.

Theorem 8. Let $f \in \mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$ with $\phi \in \mathcal{P}$ and (3.1) holds. Then the integral operator $F_{\nu}(f)$ defined by (3.2) belongs to the class $\mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$.

Proof. In view of (1.10) and Theorem 7, and by similarly applying the method of proof of Theorem 6, we deduce that the assertion of Theorem 8 holds.

Theorem 9. Let $f \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$ with $\phi \in \mathcal{P}$ and

(3.13)
$$\Re \left(\sigma - \eta \, \xi - (p - \eta) \xi \, \phi(z) \right) > 0, \quad (z \in \mathbb{U}; \ \xi \neq 0).$$

Then the function $\mathcal{I}_{\lambda,p,\mu}^{n,l}K_{\xi}^{\sigma}(f) \in \Sigma_p$ defined by

(3.14)
$$\begin{aligned} \mathcal{I}_{\lambda,p,\mu}^{n,l} K_{\xi}^{\sigma}(f) &:= \mathcal{I}_{\lambda,p,\mu}^{n,l} K_{\xi}^{\sigma}(f)(z) \\ &= \left(\frac{\sigma - p\xi}{z^{\sigma}} \int_{0}^{z} t^{\sigma - 1} \left(\mathcal{I}_{\lambda,\mu}^{n} f(t)\right)^{\xi} dt\right)^{1/\xi}, \quad (z \in \mathbb{U}^{*}; \ \xi \neq 0) \end{aligned}$$

belongs to the class $\mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$.

Proof. Let $f \in \mathcal{MS}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$ and suppose that

(3.15)
$$\mathbb{M}(z) := \frac{1}{p - \eta} \left(-\frac{z \left(\mathcal{I}_{\lambda, p, \mu}^{n, l} K_{\xi}^{\sigma}(f) \right)'(z)}{\mathcal{I}_{\lambda, p, \mu}^{n, l} K_{\xi}^{\sigma}(f)(z)} - \eta \right), \quad (z \in \mathbb{U}).$$

Combining (3.14) and (3.15), we have

(3.16)
$$\sigma - \eta \xi - (p - \eta) \xi \mathbb{M}(z) = (\sigma - p \xi) \left(\frac{\mathcal{I}_{\lambda, p, \mu}^{n, l} f(z)}{\mathcal{I}_{\lambda, p, \mu}^{n, l} K_{\xi}^{\sigma}(f)(z)} \right)^{\xi}.$$

Making use of (3.14), (3.15) and (3.16), we get

(3.17)
$$\mathbb{M}(z) + \frac{z\mathbb{M}'(z)}{\sigma - \eta\xi - (p - \eta)\xi\mathbb{M}(z)} = \frac{1}{p - \eta} \left(-\frac{z\left(\mathcal{I}_{\lambda,p,\mu}^{n,l}f\right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l}f(z)} - \eta \right) \prec \phi(z), \quad (z \in \mathbb{U}).$$

Since (3.13) holds, an application of Lemma 1 to (3.17) yields

$$\mathbb{M}(z) \prec \phi(z), \quad (z \in \mathbb{U}),$$

that is, that $\mathcal{I}_{\lambda,p,\mu}^{n,l}K_{\xi}^{\sigma}(f) \in \mathcal{MS}_{\lambda,p,\mu}^{n,l}(\eta;\phi)$. We thus complete the proof of Theorem 9.

Theorem 10. Let $f \in \mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$ with $\phi \in \mathcal{P}$ and (3.13) holds. Then the function $\mathcal{I}^{n,l}_{\lambda,p,\mu}K^{\sigma}_{\xi}(f) \in \Sigma_p$ defined by (3.14) belongs to the class $\mathcal{MK}^{n,l}_{\lambda,p,\mu}(\eta;\phi)$.

Proof. By virtue of (1.9) and Theorem 9, and by similarly applying the method of proof of Theorem 6, we conclude that the assertion of Theorem 10 holds. \Box

Theorem 11. Let $f \in \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$ with $\phi \in \mathcal{P}$ and (3.13) holds. Then the function $\mathcal{I}^{n,l}_{\lambda,p,\mu}K^{\sigma}_{\xi}(f) \in \Sigma_p$ defined by (3.14) belongs to the class $\mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$.

Proof. Let $f \in \mathcal{MC}^{n,l}_{\lambda,p,\mu}(\eta, \delta; \phi, \psi)$. Then, by definition, we know that there exists a function $g \in \mathcal{MS}^*_p(\eta; \phi)$ such that (3.7) holds. Since $g \in \mathcal{MS}^*_p(\eta; \phi)$, by Theorem 9, we easily find that $\mathcal{I}^{n,l}_{\lambda,p,\mu}K^{\sigma}_{\xi}(g) \in \mathcal{MS}^*_p(\eta; \phi)$, which implies that

(3.18)
$$\mathbb{R}(z) := \frac{1}{p - \eta} \left(-\frac{z \left(\mathcal{I}_{\lambda, p, \mu}^{n, l} K_{\xi}^{\sigma}(g) \right)'(z)}{\mathcal{I}_{\lambda, p, \mu}^{n, l} K_{\xi}^{\sigma}(g)(z)} - \eta \right) \prec \phi(z)$$

We now set

(3.19)
$$\mathbb{L}(z) := \frac{1}{p-\delta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu}^{n,l} K_{\xi}^{\sigma}(f) \right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l} K_{\xi}^{\sigma}(g)(z)} - \delta \right),$$

where \mathbb{L} is analytic in \mathbb{U} with $\mathbb{L}(0) = 1$. From (3.14) and (3.19), we get

$$(3.20) \quad -\xi[(p-\delta)\mathbb{L}(z)+\delta]\mathcal{I}^{n,l}_{\lambda,p,\mu}K^{\sigma}_{\xi}(g)(z)+\delta\mathcal{I}^{n,l}_{\lambda,p,\mu}K^{\sigma}_{\xi}(f)(z)=(\delta-p\,\xi)\mathcal{I}^{n,l}_{\lambda,p,\mu}f(z).$$

Combining (3.18), (3.19) and (3.20), we find that

(3.21)
$$-\xi(p-\delta)z\mathbb{L}'(z) - [(p-\delta)\mathbb{L}(z)+\delta][-(p-\eta)\xi\mathbb{R}(z) - \eta\xi + \delta]$$
$$= (\delta - p\xi)\frac{z\left(\mathcal{I}^{n,l}_{\lambda,p,\mu}f\right)'(z)}{\mathcal{I}^{n,l}_{\lambda,p,\mu}K^{\sigma}_{\xi}(g)(z)}.$$

By virtue of (1.8), (3.18) and (3.21), we deduce that

(3.22)
$$\frac{1}{p-\delta} \left(-\frac{z \left(\mathcal{I}_{\lambda,p,\mu}^{n,l} f \right)'(z)}{\mathcal{I}_{\lambda,p,\mu}^{n,l} g(z)} - \delta \right)$$
$$= \mathbb{L}(z) + \frac{z \mathbb{L}'(z)}{-(p-\eta)\xi \mathbb{R}(z) - \eta \xi + \delta} \prec \psi(z), \quad (z \in \mathbb{U}).$$

The remainder of the proof of Theorem 11 is similar to that of Theorem 3. We, therefore, choose to omit the analogous details involved. We thus find that

$$\mathbb{L}(z)\prec\psi(z),\quad(z\in\mathbb{U}),$$

which implies that $\mathcal{I}_{\lambda,p,\mu}^{n,l} K_{\xi}^{\sigma}(f) \in \mathcal{MC}_{\lambda,p,\mu}^{n,l}(\eta,\delta;\phi,\psi)$. The proof of Theorem 11 is thus completed. \Box

Theorem 12. Let $f \in \mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$ with $\phi \in \mathcal{P}$ and (3.13) holds. Then the function $\mathcal{I}^{n,l}_{\lambda,p,\mu}K^{\sigma}_{\xi}(f) \in \Sigma_p$ defined by (3.14) belongs to the class $\mathcal{MQC}^{n,l}_{\lambda,p,\mu}(\eta,\delta;\phi,\psi)$.

Proof. By virtue of (1.10) and Theorem 11, and by similarly applying the method of proof of Theorem 6, we deduce that the assertion of Theorem 12 holds.

4. Subordination and superordination results

Finally, we derive some subordination and superordination results associated with the operator $\mathcal{I}_{\lambda,p,\mu}^{n,l}$. The proofs are much akin to that of the results obtained by Cho *et al.* [4], we here choose to omit the details involved.

Corollary 1. Let $f, g \in \Sigma_p$ and l > 0. If

(4.1)
$$\Re\left(1+\frac{z\varphi''(z)}{\varphi'(z)}\right) > -\varrho, \quad \left(z \in \mathbb{U}; \ \varphi(z) := z^p \mathcal{I}^{n,l}_{\lambda,p,\mu} g(z)\right),$$

where

(4.2)
$$\varrho := \frac{l^2 + \lambda^2 - |l^2 - \lambda^2|}{4l\lambda},$$

then the following subordination relationship

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}f(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}g(z), \quad (z \in \mathbb{U})$$

implies that

$$z^{p}\mathcal{I}^{n+1,l}_{\lambda,p,\mu}f(z) \prec z^{p}\mathcal{I}^{n+1,l}_{\lambda,p,\mu}g(z), \quad (z \in \mathbb{U}).$$

Furthermore, the function $z^p \mathcal{I}^{n+1,l}_{\lambda,p,\mu}g$ is the best dominant.

Corollary 2. Let $f, g \in \Sigma_p$. If

$$\Re\left(1+\frac{z\chi''(z)}{\chi'(z)}\right) > -\varpi, \quad \left(z \in \mathbb{U}; \ \chi(z) := z^p \mathcal{I}^{n,l}_{\lambda,p,\mu+1}g(z)\right),$$

where

(4.3)
$$\varpi := \frac{1 + \mu^2 - |1 - \mu^2|}{4\mu},$$

then the following subordination relationship

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu+1}f(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu+1}g(z), \quad (z \in \mathbb{U})$$

implies that

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}f(z)\prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}g(z),\quad(z\in\mathbb{U}).$$

Furthermore, the function $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l}g$ is the best dominant.

If f is subordinate to \mathscr{F} , then \mathscr{F} is superordinate to f. We now derive the following superordination results.

Corollary 3. Let $f, g \in \Sigma_p$ and l > 0. If

$$\Re\left(1+\frac{z\varphi''(z)}{\varphi'(z)}\right) > -\varrho, \quad \left(z \in \mathbb{U}; \ \varphi(z) := z^p \mathcal{I}^{n,l}_{\lambda,p,\mu}g(z)\right),$$

where ϱ is given by (4.2), also let the function $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l} f$ is univalent in \mathbb{U} and $z^p \mathcal{I}_{\lambda,p,\mu}^{n+1,l} f \in Q$, then the following subordination relationship

$$z^{p}\mathcal{I}^{n,\,l}_{\lambda,p,\mu}g(z)\prec z^{p}\mathcal{I}^{n,\,l}_{\lambda,p,\mu}f(z),\quad(z\in\mathbb{U})$$

implies that

$$z^{p}\mathcal{I}^{n+1,l}_{\lambda,p,\mu}g(z) \prec z^{p}\mathcal{I}^{n+1,l}_{\lambda,p,\mu}f(z), \quad (z \in \mathbb{U})$$

Furthermore, the function $z^p \mathcal{I}^{n+1,l}_{\lambda,p,\mu}g$ is the best subordinant.

Corollary 4. Let $f, g \in \Sigma_p$. If

$$\Re\left(1+\frac{z\chi''(z)}{\chi'(z)}\right) > -\varpi, \quad \left(z \in \mathbb{U}; \ \chi(z) := z^p \mathcal{I}^{n,\,l}_{\lambda,p,\mu+1}g(z)\right),$$

where ϖ is given by (4.3), also let the function $z^p \mathcal{I}_{\lambda,p,\mu+1}^{n,l} f$ is univalent in \mathbb{U} and $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l} f \in Q$, then the following subordination relationship

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu+1}g(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu+1}f(z), \quad (z \in \mathbb{U})$$

implies that

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}g(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}f(z), \quad (z \in \mathbb{U}).$$

Furthermore, the function $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l}g$ is the best subordinant.

Combining the above mentioned subordination and superordination results involving the operator $\mathcal{I}_{\lambda,p,\mu}^{n,l}$, we get the following "sandwich-type results".

Corollary 5. Let $f, g_k \in \Sigma_p$ (k = 1, 2) and l > 0. If

$$\Re\left(1+\frac{z\varphi_k''(z)}{\varphi_k'(z)}\right) > -\varrho, \quad \left(z \in \mathbb{U}; \ \varphi_k(z) := z^p \mathcal{I}_{\lambda,p,\mu}^{n,l} g_k(z) \quad (k=1,\,2)\right),$$

where ϱ is given by (4.2), also let the function $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l} f$ is univalent in \mathbb{U} and $z^p \mathcal{I}_{\lambda,p,\mu}^{n+1,l} f \in Q$, then the subordination relationship

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}g_{1}(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}f(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}g_{2}(z), \quad (z \in \mathbb{U})$$

implies that

$$z^{p}\mathcal{I}^{n+1,l}_{\lambda,p,\mu}g_{1}(z) \prec z^{p}\mathcal{I}^{n+1,l}_{\lambda,p,\mu}f(z) \prec z^{p}\mathcal{I}^{n+1,l}_{\lambda,p,\mu}g_{2}(z), \quad (z \in \mathbb{U}).$$

Furthermore, the functions $z^p \mathcal{I}_{\lambda,p,\mu}^{n+1,l} g_1$ and $z^p \mathcal{I}_{\lambda,p,\mu}^{n+1,l} g_2$ are, respectively, the best subordinant and the best dominant.

Corollary 6. Let $f, g_k \in \Sigma_p \ (k = 1, 2)$. If

$$\Re\left(1+\frac{z\chi_k''(z)}{\chi_k'(z)}\right) > -\varpi, \quad \left(z \in \mathbb{U}; \ \chi_k(z) := z^p \mathcal{I}_{\lambda,p,\mu+1}^{n,l} g_k(z) \quad (k=1,\,2)\right),$$

where ϖ is given by (4.3), also let the function $z^p \mathcal{I}_{\lambda,p,\mu+1}^{n,l} f$ is univalent in \mathbb{U} and $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l} f \in Q$, then the subordination relationship

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu+1}g_{1}(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu+1}f(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu+1}g_{2}(z), \quad (z \in \mathbb{U})$$

implies that

$$z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}g_{1}(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}f(z) \prec z^{p}\mathcal{I}^{n,l}_{\lambda,p,\mu}g_{2}(z), \quad (z \in \mathbb{U}).$$

Furthermore, the functions $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l} g_1$ and $z^p \mathcal{I}_{\lambda,p,\mu}^{n,l} g_2$ are, respectively, the best subordinant and the best dominant.

Acknowledgments

The present investigation was supported by the *Natural Science Foundation* of *Hunan Province* under Grant no. 2016JJ2036. The authors would like to thank the referees for their valuable comments and suggestions, which essentially improved the quality of this paper.

References

- R. M. Ali and V. Ravichandran, Classes of meromorphic α-convex functions, Taiwanese J. Math., 14 (2010), 1479–1490.
- [2] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl., 300 (2004), 505–520.
- [3] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Spec. Funct., 16 (2005), 647–659.
- [4] N. E. Cho, O. S. Kwon and H. M. Srivastava, A class of integral operators preserving subordination and superordination for meromorphic functions, Appl. Math. Comput., 193 (2007), 463–474.
- [5] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, in General Mathematics 3, International Series of Numerical Mathematics, Vol. 64, Birkhäuser Verlag, Basel, 1983, 339–348; see also Rev. Roumaine Math. Pures Appl., 29 (1984), 567– 573.
- [6] R. M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Lett., 22 (2009), 1756–1759.
- [7] R. M. El-Ashwah and M. K. Aouf, Hadamard product of certain meromorphic starlike and convex functions, Comput. Math. Appl., 57 (2009), 1102–1106.
- [8] S. Hussain, Z. Shareef and M. Darus, On a class of functions associated with Sălăgean operator, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 111 (2017), 213–222.
- [9] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–171.
- [10] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations, 56 (1985), 297–309.

- [11] M. H. Mohd, R. M. Ali, L. S. Keong and V. Ravichandran, Subclasses of meromorphic functions associated with convolution, J. Inequal. Appl., 2009 (2009), Article ID 190291, 1–10.
- [12] M. Nunokawa and O. P. Ahuja, On meromorphic starlike and convex functions, Indian J. Pure Appl. Math., 32 (2001), 1027–1032.
- [13] K. Piejko and J. Sokół, Subclasses of meromorphic functions associated with the Cho-Kwon-Srivastava operator, J. Math. Anal. Appl., 337 (2008), 1261–1266.
- [14] S. M. Sarangi and S. B. Uralegaddi, Certain differential operators for meromorphic functions, Bull. Calcutta Math. Soc., 88 (1996), 333–336.
- [15] S. Supramaniam, R. Chandrashekar, S. K. Lee and K. G. Subramanian, Convexity of functions defined by differential inequalities and integral operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 111 (2017), 147–157.
- [16] H. M. Srivastava, D.-G. Yang and N. Xu, Some subclasses of meromorphically multivalent functions associated with a linear operator, Appl. Math. Comput., 195 (2008), 11–23.
- [17] T. Thulasiram, K. Suchithra, T. V. Sudharsan and G. Murugusundaramoorthy, Some inclusion results associated with certain subclass of analytic functions inolving Hohlov operator, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108 (2014), 711–720.
- [18] B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math., 17 (1991), 279–284.
- [19] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137–140.
- [20] Z.-G. Wang, Y.-P. Jiang and H. M. Srivastava, Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function, Comput. Math. Appl., 57 (2009), 571–586.
- [21] Z.-G. Wang, Y. Sun and Z.-H. Zhang, Certain classes of meromorphic multivalent functions, Comput. Math. Appl., 58 (2009), 1408–1417.
- [22] S.-M. Yuan, Z.-M. Liu and H. M. Srivastava, Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl., 337 (2008), 505–515.

Accepted: 3.05.2018